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Experimental and theoretical studies of sloshing waves in a rectangular channel in 
the vicinity of the second cutoff frequency are presented. The experiments were 
performed in a wave tank which is 1.2 m wide, 18 m long and 0.9 m deep. Sloshing 
waves were generated by a computer-controlled segmented wavemaker consisting of 
four independent modules. A sharp transition between two wave patterns, which 
exhibited hysteresis-type behaviour, was observed. At lower forcing frequencies a 
steady wave regime was obtained, while at higher frequencies modulation on a long 
timescale appeared. At stronger forcing, solitons were generated periodically at 
the wavemaker and then propagated away with a seemingly constant velocity. 
Experimental results are compared with numerical solutions of the appropriate 
nonlinear Schrodinger equation, a derivation of which is also presented. The 
importance of dissipation on the physical processes of wave evolution is discussed, 
and a simple dissipative model is suggested and incorporated in the governing 
equations. 

1. Introduction 
It is well known (e.g. Barnard, Mahony & Pritchard 1977, hereinafter referred to 

as BMP; Miloh 1987) that resonant waves with crests parallel to the channel walls 
and with wavelengths h = (2b)/n, n being an integer representing the mode number, 
may appear in a semi-infinite channel of depth h and width b. These waves may be 
generated by a wavemaker, whose instantaneous shape in the direction normal to 
the channel walls haa a typical wavelength A, and which operates at frequency close 
to the cutoff value defined by o* = (2gn/h) tanh (27clh)h. Waves formed in this 
manner are usually referred to as ‘sloshing waves’. An alternative way of generating 
similar waves is parametric excitation by a plane wavemaker at subharmonic 
frequency, Garrett (1970), Barnard & Pritchard (1972), Lichter & Shemer 1986). 
These waves are known as ‘cross-waves’. Linear theory of sloshing waves, given e.g. 
in Wehausen (1974), fails to describe correctly the wave response in the vicinity of 
the cutoff frequencies (Shemer, Kit & Miloh 1987), since it yields infinite amplitudes 
at these frequencies. In  order to account for the finite wave amplitude observed 
experimentally at the cutoff frequency, nonlinear effects have to be considered in the 
theoretical model, although dissipation can become crucial under certain 
circumstances. 

The most extensive experimental work reported on sloshing waves is due to BMP. 
They have performed measurements covering a wide range of forcing amplitudes in 
the vicinity of the first cutoff frequency by using a pointer-type wave gauge. BMP 
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have observed that two distinct steady wave patterns may exist in the channel at  
identical forcing conditions. In some experiments the maximum of the wave height 
distribution along the channel was found to be shifted downwards from the 
wavemaker. A similar result was also reported by Barnard & Pritchard (1972) in their 
experiments on cross-waves. Miles (1985) suggested that this type of distribution 
may be interpreted as a trapped soliton. 

A steady soliton-like solution was observed experimentally by Wu, Keolian & 
Rudnick (1984). An analysis of this non-propagating soliton was made by Larraza 
& Putterman (1984) by employing the nonlinear Schrodinger (NLS) equation and by 
Miles (1984). 

A consistent to third-order derivation of the nonlinear Schrodinger equation for 
the propagation of an acoustic wave in a duct, including a wavemaker-like forcing, 
was given by Aranha, Yue & Mei (1982). Their numerical solutions revealed that in 
the case which is analogous to deep water in the channel, no steady solution of the 
NLS equation can be obtained. The solution of an initial boundary-value problem 
gave a wave pattern which can be decomposed into two parts: an unsteady decaying 
wave adjacent to the wavemaker, and a single solition which propagates away from 
the wavemaker. The unsteady character of the solution obtained numerically by 
Aranha et al. (1982) is in contrast with the steady distribution observed experimen- 
tally by BMP. 

This contradiction between the only experimental results known to us on sloshing 
waves and the numerical predictions, triggered our interest in this problem and was 
the main motivation for the present study. We decided to take advantage of our 
considerably larger wave tank, compared with the one used by BMP, which was about 
30 cm wide. 

In a bigger facility one can generally expect lower dissipation rates. It is plausible 
to assume that the strong dissipation in BMP experiments is at least partially 
responsible for the evident discrepancy between their reported results and the 
numerical predictions of Aranha et al. By using our modular wavemaker it is possible 
to generate both the first and the second modes of sloshing waves. Our present 
experiments were restricted to the second mode, where detailed computer-based 
measurements of waveforms in the vicinity of the second cutoff frequency were 
performed. The experimental results are supplemented by a derivation of the 
nonlinear Schrodinger equation which is found to be appropriate for sloshing waves. 
Numerical solutions of this equation are also presented. 

2. Theory 
Consider a semi-inhite rectangular wave tank of width b and water depth h 

equipped with a wavemaker situated at x = 0. The undisturbed free surface is z = 0 
(with z pointing vertically upward), z = - h is the bottom and the two parallel channel 
walls lie at  y = 0 and y = b. All variables are now rendered dimensionless using b as 
a lengthscale and (b/g)t as a timescale. The governing equation and the free-surface 
boundary conditions, relating the induced velocity potential +(x, y, z, t )  and the 
resulting free-surface elevation q(x, y, t ) ,  are as follows: 

(2.1) va+ = 0 (0 < y < 1 ;  - h  < z < q(z, y , t ) )  

( 2 . 2 ~ )  

(2.2b) 
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This should be supplemented by the boundary conditions on the channel walls : 

(2.3a) 

(2.3b) 

Eliminating the free-surface displacement 7 from (2.2) and (2.3) and using Taylor 
expansion about z = 0, yields the following relationship correct to third order 
(Newman 1977) : 

9tt + $2 + 2 w  V#t + W * V ( V 9 * V # )  - # t ( k t  + $2 + 2V# V9th 
- ( -# t# , t+P#*V#)  (#,,+#*),+W,"c#tt+9,),, = 0. (2.4) 

#$ = e ( g  + 9, 5, + #, 5,) at z = sNy, z, t )  = k5f (y, 2) (e-int + C.C.), (2.5) 

where E is a small parameter related to the amplitude of the wavemaker 5 ,  C.C. denotes 
complex conjugate and the 4-segment wavemaker shape f (y, z )  is given by 

The boundary condition at the wavemaker is 

1 + -  (0 < y <3,3 < y < b) ,  
f ( Y 9 4  = ( 3 (2.6) i( 1 + -  3 ( i b < Y < < ) ,  

in order to obtain the second sloshing mode with zero net displacement. The forcing 
frequency SZ is related to the wavenumber k by the linear dispersion relation 

SZz = k tanh kh. (2.7) 

The condition at infinity is 
#-+O asx+co, 

and the initial condition is given by 

9@, y, z, 0) = #&, Y, 4, (2.9) 

where q50 is a known function. The linear solution of (2.1) with boundary conditions 
(2.2), (2.3) is given by Wehausen (1974) and Shemer et al. (1987) 

cosh k,(z+ h) 
cosh k, h 

# = ecosk,y (C, exp(-int)+c.c.), (2.10) 

where k, = 2x is the wavenumber a t  the second cutoff frequency w, = (k, tanh k, h)t ; 
C, is given by 

and 

c, = - exp (i(k2- k$z) for k > k,, 
( k2 - k$ 

c =- " exp(-(ki-k2)tz) fork < k,, 
(kg-k2)i 

(2.11a) 

(2.11 b) 

(2.12) 

The parasitic modes related to the shape of the wavemaker can be disregarded in the 
vicinity of cutoff frequencies (Shemer et al. 1987). The value off, obtained from (2.12) 
for the geometry of our wavemaker is f, = 1.616. 
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Adopting the approach used by Aranha et al. (1982) and using the dispersion 
relation (2.7), the variation of C,  exp (-iQt) around w, can be rewritten as 

e-iao t exp [ i( 4 2  02 (Q '- Wz)% x- i(512-w')t)], SZ > w2,  (2 .13~)  
tanh k, h 202 

e-iw t "' (~~-Q)~X-~( '~ - ""~) ] ,  51 < 0,. (2.13b) 
' exp[-(d2tanhk,h 2% 

Equations (2.13) in the immediate vicinity of the second cutoff frequency o2 define 
slow modulations in x and t. The detuning parameter h and slow variables X and 7 

are now introduced 

522-w' 2w2(B-w,) Et 
, x= B X ,  7 = -. 

8 8 2w2 
A=- x (2.14) 

This particular ordering between physical and slow variables, as well as the 
relationship between the forcing frequency 51 and the cutoff frequency 02, was chosen 
so as to eliminate secular first harmonic terms in the third order (Aranha et al. 1982). 

A three-term expansion of q5 can be represented as 

$4 = E+z51 + Eq52 + d+53 + O ( E 2 ) .  (2.15) 

We look for solutions of (2.1) with boundary conditions (2.2) and (2.3), valid to 8. 
The fast-time independent (DC) terms will be disregarded in the derivation and 
referred to later. 

Order A 
Aq51=0 f o r O < y < l ;  - h < z < O ,  

q51tt + q51z = 0 a t  z = 0, 

= 0 a t  y = 0 , l ;  q51z = 0 at z = -h. 

The solution of (2.16) with boundary conditions (2.17), (2.18) is given by 

(C(X ,  7 )  e-int + C.C.). 
cosh k2(z + h) 

cosh k, h 
q51 = cos k, y 

The boundary condition at the wavemaker (2.5) can now be rewritten 

thus 

and the relation between E and the stroke of the wavemaker s is obtained, 

8 = f2+s. 

Order E 

= 0. 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

Denoting T = tanh k, h, substituting (2.19) into (2.4) and retaining terms up to the 
second order yields 

q52tt+q52r = SZk~[+(1+3P)+$(P-l)  cos2k, y] (iC2 e-2i"t+c.c.), (2.24) 



Nonlinear sloshing waves in a rectangular channel 269 

with the boundary conditions 

$ , , = O  a t y = 0 ; 1 ,  $ 2 z = 0  a tz=-h .  (2.25) 

The solution is given by 

(iCe e-2int + c.c.). (2.26) 
cosh 2k, h 

1 + 3 P  31-T4 
$2 = '::[-- +-- 8 PQ cosk,Y 

Order d 
The governing equation, 

(2.27) a 2 A  - cash k,(z+h) a2C e-int 
coshk,h (w A$8 = -- - -cosk,y 

axB 

Boundary conditions 

$3,, + $3z = qai(IC12C e-mt + c.c.) +qs3(CS eWsint + c.c.) 

-[(ig+AC) e-'"'+c.c.] cosk,y at z = 0, (2.28) 

where 
3( 1 - P)' 

4T2 
cos k, y cos 2k, y qal = -ki[3(1-P) sin k, y sin 2k, y + 

2T2 
-T4+4P-5 

cos k, y + !j( 1 - P)  (3 - T2) cos8 k, y], (2.29) + 4  

$3,=0 a t y = O , l ;  qbs2=0 a t z = - h .  (2.30) 

The necessary condition for solvability of inhomogeneous problem (2.27)-(2.30), 
which may be obtained using the Green's theorem (see, e.g. Stakgold 1979), yields 

where 

ac a=c 
a7 g a x 2  

i-+c2-+hC+flC12C = 0, 

T+ k, h(1- F)  
c; = 

2k2 
7 

(2.31) 

(2.32) 

and (2.33) 

For deep water (k ,h+m,T= l),  

K = ki. (2.34) 

The deep-water approximation (2.34) was found to hold in our experimental facility, 
where k, h = A. 

The expression (2.33), obtained here for the nonlinear term, is in agreement with 
the one given by Larraza & Putterman (1984) and differs from the coefficient of 
Tadjbakhsh & Keller (1960) and Miles (1976) : 

K = i P  2T4+3T2+12-- (2.35) 

As was pointed out by Larraza & Putterman, this discrepancy stems from the 
difference in the effective mean water depth. In  our derivation, as well as in that of 
Larraza & Putterman, mean water depth was assumed constant. The alternative 

( T2' g ,  
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expression (2.35) can be obtained from (2.33) by realizing that the nonlinear term 
causes a change in the mean water depth. This change is given up to second order 

To = i[(M- (v$75)21 (2.36) 

(Larraza & Putterman 1984). When this shift in the mean water depth is incorporated 
in the dispersion relation, one obtains the amplitude-dependent resonant frequency 

U: = w:(h)+i(l-T2)2ki$4. (2.37) 

The substitution of (2.37) into (2.14) and (2.31) yields the value of K ,  which 
corresponds to (2.35). 

In  the case of an infinite channel, the expression (2.35) should be used, since then 
the local change in the mean water depth actually takes place and does not influence 
the mean water level in the whole channel. On the other hand, when the channel is 
of finite length comparable with the length of the disturbance, no local change in the 
mean water depth can occur due to the total volume conservation, and hence (2.33) 
is valid. 

It is convenient to renormalize the variables and the coefficients of (2.31) in the 
following way : 

by 

fi=x, 2h d = ( - )  K t  ? = ~ K T ,  
2c; ’ 

(2.38) 

so that the nonlinear Schrodinger equation (2.31) can now be rewritten in its standard 
form : 

(2.39) 

In order to compare the theoretical results with the experimental data, the relation 
between the renormalized dimensionless quantities and the corresponding physical 
values is necessary. Using (2.38) and (2.14) for the deep-water case ( K  = (271)~; 
ci = 1/4n), one obtains 

The boundary condition at the wavemaker (2.21) is now replaced by 

so that the normalized value of 2 is related to the wavemaker stroke 5 by 

The symbol A will be omitted from here on. 

3. Numerical solutions 

(2.40) 

(2.41) 

(2.42) 

Equation (2.39) is identical to the NLS equation solved by Aranha etal. The 
numerical scheme presented in their paper has been adopted in the present work. 
Equation (2.39) with the boundary condition (2.41) and zero initial condition was 
solved numerically using a semi-implicit Crank-Nicolson-type scheme and by 
employing explicit estimation of the nonlinear term. Some calculations were also 
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FIGURE 1. Spa-time evolution of IC(X, T)I for the inviscid case; (a) h = -0.1; 
(b)  h = -0.2; (c) h = -0.5. 
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FIQURE 2. Time evolution of the wave amplitude at the wavemaker; (a) A = -0.5; 
( b )  h = -0.1. 

performed using the numerical scheme of Stiassnie & Kroszynski (1982) with iterative 
estimation of the nonlinear term. Both methods gave very similar results. The step 
sizes were smaller than those checked by Aranha et al. (i.e. AX < 0 .2 ;  AT < 0.025). 
In  most of the runs presented here, we chose AX = 0.1 and AT = 0.005. Substitution 
of the length of the channel L = 18 m into (2.40) gives for the maximum amplitude 
of forcing the renormalized value of L less than 20. In order to eliminate the influence 
of the far end of the channel, the calculations were performed for 0 < X < 100, which 
is equivalent to a channel substantially longer than the present one. The results, 
however, are presented only for X < 40. 

Figure 1 (a) shows the spacetime evolution of IC(X, T ) I  for A = - 0.1. A propagating 
soliton, similar to the one found by Aranha et al. for positive and zero values of the 
detuning parameter A, was obtained. Once generated, the soliton propagates with a 
constant velocity down the channel. The non-dimensional propagation velocity 
estimated from figure l (a)  is about 2, in agreement with the result obtained by 
Aranha et al. for A = 0. The height of the soliton increases initially (up to about 
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7 = lo), and then decreases again with some of the energy apparently transferred to 
the background waves at 7 > 10. 

Similar calculations which were performed for A = -0.2, gave a much flatter 
soliton with a substantially lower height. However, it is important to note that the 
propagation velocity remains essentially unchanged compared with that measured 
from figure 1 (a). For h = -0.5, no soliton-like solution, was obtained, and the 
solution resembles the reported results of Aranha et al. for A = - 1 and A = - 2. 

Since the nonlinear term coefficient in (2.39) is positive, no steady solutions can 
be expected for A = 0 (Aranha et al.). The present calculations show that the steady 
state is never reached for all values of A employed. Figure 2 shows the variation of 
C0(7) = IC(0, T ) I  for A = -0.5 (figure 2a)  and for A = 0.1 (figure 2b). While the results 
are qualitatively similar, the oscillations of the wave amplitude at the wavemaker 
have both amplitudes and frequencies which depend strongly on A. The amplitude 
behaviour in the initial stage of evolution is also notably different. 

4. Experimental procedure 
Experiments were performed in a wave tank which is 18 m long, 1.2 m wide, and 

0.9 m deep, and filled to a mean water level of 0.6 m. Waves were generated by a 
modular paddle-type wavemaker which consisted of four independent sections. A 
beach for wave energy absorption was placed at the far end of the tank. The detailed 
description of the experimental facility is given in Shemer et al. (1987). 

A stable wavemaker frequency with the possibility of fine tuning is indispensable 
for obtaining accurate and repeatable results in the close vicinity of the cutoff 
frequency, for low absolute values of the detuning parameter A. These features are 
extremely important since the most intriguing nonlinear phenomena occur in a very 
narrow frequency band and depend critically on previous history. For this reason it 
was decided to operate the wavemaker using a 1 MHz quartz clock of a PDP 11/23 
minicomputer. A total of 32 data points were used to emulate the sinusoidal signal. 
The output of the D/A converter was low-pass filtered using a Krohn-Hite filter. In 
this way a period resolution of 32 ps was obtained. Since the forcing period for the 
second cutoff frequency, where the measurements were made, is about 880 ms, the 
tuning accuracy (AQ)/Q which could be attained was as good as 3.6 x In  order 
to obtain a second-mode sloshing wave with a zero net displacement, and thus to 
eliminate the contamination of the wave field by a plane propagating wave, all 
wavemaker sections were operated at identical amplitudes with a 180' phase shift 
between the two inner and the two outer wavemaker segments. 

The instantaneous position of each wavemaker section could be monitored using 
the output signals of the position potentiometers. The instantaneous surface elevation 
of the induced wavefield was measured by four conductance-type wave height gauges 
which were located along the centreline of the channel. The gauges were placed on 
a bar and could be moved by a carriage along the tank. 

The outputs of 4 wave gauges, 4 wavemaker position potentiometers, and the 
forcing signal which served as phase reference, were sampled instantaneously using 
an A/D converter of the same minicomputer. All information was recorded on a 
magnetic tape for further processing. This procedure enabled us to perform long-time 
measurements. At a later stage the recorded time series for each data channel were 
phase-averaged and the corresponding amplitudes and phases were obtained from 
these phase-averaged signals using the Fourier transform. The data processing 
procedure is given in detail in Shemer et al. (1987). 
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Experiments were performed at 3 values of the wavemaker stroke at the mean 
water level : 0.25 cm, 0.35 cm and 0.49 cm, corresponding to the normalized dimen- 
sionless forcing amplitudes, defined by (2.42), of E = 0.42 x e = 0.60 x and 
e = 0.83 x respectively. These values of 8 were used to normalize the experi- 
mentally measured quantities according to (2.40). 

5. Experimental results 
5.1. Wide frequency range 

The general behaviour of sloshing waves for frequencies away from the cutoff, is 
described reasonably well by the linear theory (Shemer et al. 1987). In the present 
work we are interested in the sloshing-wave response in the close vicinity of the cutoff 
frequency, where nonlinear effects become dominant. Linear theory suggests the 
existence of two distinct wave regimes in the channel. Below the cutoff frequency, 
one can expect a decaying wave field whereas a radiating wave is generated at  
frequencies above the cutoff. The critical frequency range, where transition from one 
wave regime to another occurs, is amplitude-dependent and down-shifted relative to 
the linear cutoff value, (Penney & Price 1952). In  view of the fact that the exact 
boundary conditions on the beach at  the far end of the tank are not well defined, 
it was decided to restrict the experiments to conditions where no influence of the far 
end can be observed and the water close to the beach remains practically still. 
Detailed waveform measurements were thus performed mainly a t  frequencies below 
the cutoff value where the wave amplitude decays along the channel. 

In order to isolate the frequency range where most interesting nonlinear phenom- 
ena can be observed, measurements were first performed covering a relatively wide 
frequency region. Figure 3 show the wavenumber dependence of the amplitude a, 
(figure3a), and the phase angle relative to the phase of central sections of the 
wavemaker, $, (figure3b), measured by the wave gauge located close to the 
wavemaker (z = 11 cm, which corresponds to the normalized dimensionless 
X = 0.070) at intermediate amplitude of forcing (e = 0.60 x 

Linear theory predicts a 180' phase shift between the amplitudes of the wavemaker 
and the surface elevation for the decaying regime and a 90" phase shift for the 
radiating wave. Figure 3 ( b )  indicates that the linear limit is approached at a 
relatively low frequency (kb /x  < 1.8, where k is the dimensional wavenumber, 
corresponding to the values of the detuning parameter A < - 13). Increasing the 
frequency of the wavemaker results in a decrease of the phase shift $. It is important 
to note that the energy rate introduced into the system by the wavemaker when 
operating at frequency SZ and with a stroke s, is proportional to the product 
SZs*asin$. The deviation of $ from 180" in the vicinity of the resonance clearly 
indicates that there exists an energy feed mechanism into the wave field. Contrary 
to the radiating mode, no energy transfer to infinity occurs in the decaying regime, 
thus energy dissipation, being the only possible energy sink, plays an important role 
in this range of frequencies. 

The wave amplitude attains a maximum a t  k b / x  = 1.95 ( A  = -3), and then 
decreases. It is interesting to note that at approximately the same value of kb/n the 
phase shift q5 crosses the 90" line and thus the energy flow exhibits there a pronounced 
maximum. 

A t  kb /x  x 1.991 ( A  x -0.60), a dramatic transition in the wave-field pattern is 
observed which manifests itself in figure 3 in the form of a jump in both amplitude 
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FIQURE 3. The dependence of (a) wave amplitudes and (b )  wave phase angles on wavenumber. 
Forcing amplitude E = 0.60 x lo-*, probe location z = 11  om, X = 0.070. 

and phase angle. Observation of the wave field in the tank suggests that a wave 
pattern of radiating nature is generated. The increase in the phase angle 4, which 
now approaches the value of W", supports this suggestion. The detailed investigation 
of the transition process, is one of the main goals of the present work. 

5.2. Phase distributions 
Most interesting nonlinear phenomena are to be expected in the transition region 
where the history of the wave field may be of importance. A possibility of the 
existence of two distinct wave patterns a t  identical forcing conditions, was first 
observed by BMP. Examples displaying wave phase angles in the vicinity of the 
wavemaker (z = 11 cm) for three amplitudes of forcing, as a function of frequency, 
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FIGURE 4. The dependence of phase angles of probe located at x = 11 cm on wavenumber; x , for 
increasing frequency; A, for decreasing frequency. Forcing amplitude: (a) E = 0.42 x 
(b )  = 0.60 x 10-4; ( c )  E = 0.83 x 10-4. 

are presented in figure 4. In order to obtain these distributions, special care was taken 
to vary the forcing frequency monotonically. This could be achieved due to the special 
features provided by the computer control of the wavemaker. 

Two distinct modes may be observed at  identical forcing conditions. One mode is 
obtained when the forcing frequency is increased monotonically from relatively low 
values, until a sudden increase in the phase angle occurs, with corresponding radical 
change in the whole wave field. This wave pattern, which is characterized in figure 4 
by relatively low values of the phase angles, will be called here a 'decaying' mode. 
The second mode, with higher values of the phase angles, will be denoted as a 
'radiating' mode. This notation represents the generalization of the linear theory, 
where the transition between the two modes occurs at the cutoff frequency. The sharp 
transition between the modes, on one hand, and the gradual change in the wave 
parameters beyond the transition region, on the other hand, seem to justify this 
notation. One has to keep in mind, though, that in the transition region the ' decaying' 
and the 'radiating' modes are quite different from their linear counterparts, where 
the phase shifts are 180" and 90°, respectively. 

The hysteresis-type behaviour is evident for all three forcing amplitudes shown in 
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and A, 160 cm, X = 1.20, on wavenumber, forcing amplitude 6 = 0.83 x lo-'. 
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figure 4. The transition from the ‘decaying’ to the ‘radiating’ mode occurs at 
frequencies which are slightly higher than those at which a reverse transition is 
observed. Generally speaking, the transition region is shifted towards lower fre- 
quencies with increasing amplitudes. Stronger forcing also causes the hysteresis loop 
to become narrower. It is interesting to  note that close to the transition point the 
phase angle of the ‘decaying’ mode, in all three cases, attains practically the same 
value of approximately 40°, while the phase of the ‘radiating’ mode decreases signifi- 
cantly with increasing amplitude. 

In figure 4 the hysteresis loop was obtained by keeping the forcing amplitude 
constant. The same phenomenon could be obtained by varying the forcing amplitude 
at a constant frequency (figure 5). At the lowest wavemaker frequency (figure 5a) ,  
very high amplitudes and thus strong nonlinear effects, are necessary in order to 
generate a ‘radiating’ regime. On the contrary, a t  high frequencies (figure 5c) ,  the 
‘decaying’ mode can be observed only for very low forcing amplitudes. At  an 
intermediate frequency (figure 5b) ,  a wide hysteresis loop was obtained. One notices 
that here again the transition from ‘decaying’ to ‘radiating’ mode, for all values of 
forcing, occurs when the phase shift is about 40”. 

Figures 4 and 5 illustrated the transition between the ‘ decaying ’ and the ‘ radiating ’ 
modes by showing the frequency dependence of the surface elevation phase angle in 
the vicinity of the wavemaker. This transition at  forcing amplitude E = 0.83 x 
is shown in figure 6 from a different point of view. The phase angles relative to the 
wavemaker are shown here for two probes located at  11 cm and 160 cm (correspond- 
ing to  a dimensionless renormalized X = 0.083 and X = 1.20, respectively). One can 
immediately see that for kb /x  < 1.986 ( A  < -0.68), the phase angles are identical, 
as expected for a standing wave. The transition at this higher amplitude occurs at 
a lower value of kb /x  than in figure 3. The wave field beyond transition is 
characterized by an increased value of q5 close to the wavemaker, similar to the results 
displayed in figure 3(b). On the other hand, the phase angle at the downstream 
position continues to decrease. Significant phase differences measured at different 
locations indicate that energy is propagating along the channel, as it is expected in 
the radiating wave regime. This observation provides an additional justification for 
the accepted notation of the wave modes. It is observed in the experiments that due 
to dissipation the amplitude of the propagating wave decays well before the beach. 

5.3. Amplitude distributions along the channel 
Examples displaying two different wave amplitude distributions along the channel 
at the same amplitudes and frequencies of forcing are presented in figure 7. In this 
figure, distribution I was obtained when the desired frequency was approached from 
below, while distribution I1 represents the case where the same frequency was 
approached from above. Curves I represent therefore the ‘decaying ’ wave regime. 
At a lower frequency, the wave amplitude decays monotonically (although the decay 
is not exponential and an inflexion point in the longitudinal wave amplitude 
distribution is clearly seen). The slight increase in the frequency, which amounts to 
an increase in kb /x  by 0.06 %, results in a qualitatively different distribution where 
the maximum amplitude was found to be detached from the wavemaker. The wave 
amplitudes at this frequency, after attaining a maximum, decrease long the channel 
in a similar manner to that displayed in figure 7 (a).  In  both cases the waves vanish 
while still far from the beach. No measurements were performed in the monotonically 
decreasing region far from the wavemaker. It is important to stress here that 
distributions of type I represent wave regimes which are basically steady. 
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The ‘decaying’ mode in the vicinity of the transition is different in essence from 
the linear solution and may be considered as a trapped soliton, discussed by Miles 
(1985). The presence of a trapped soliton may also explain the shift in the location 
of the maximum amplitude away from the wavemaker. A similar phenomenon was 
also observed in the cross-waves experiments reported by Barnard & Pritchard 
(1972) and Lichter & Shemer (1986). 

In  contrast with regime I, the family of curves labelled as I1 (‘radiating’ mode) 
represent essentially an unsteady wave field, which is characterized by modulation 
on a slow timescale. Before dealing with the details of the long time modulation, we 
shall restrict our analysis to values obtained from phase-averaging the results over 
times longer than the typical modulation period. The distinct property of a type I1 
distribution shown in figure 7, is that the amplitude first decreases significantly, 
attains a minimum at a distance which is comparable with the width of the tank (and 
hence with the wavelength), and then increases again reaching a maximum at a 
substantial distance from the wavemaker. From that location on, the wave ampli- 
tudes decay monotonically towards the beach. 

Although the phase hysteresis at a distance of 11 cm from the wavemaker is clearly 
seen in the experiment, the amplitude measurements at this location do not give a 
clear picture. The reason for that can be understood from a close scrutiny of the 
amplitude distributions shown in figure 7. One can see that close to the wavemaker 
the absolute difference in the wave amplitude between the ‘decaying’ and the 
‘radiating’ modes is small. Moreover, the sign of this difference changes in a narrow 
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range of frequencies. For this reason it is more instructive at the present stage to 
demonstrate the behaviour of the amplitudes in the vicinity of the transition at some 
distance from the wavemaker. 

In figure 8 the dependence of wave amplitudes on the wavenumber is shown at a 
distance of 111 cm (figure 8a)  and 160 cm (figure 8b)  from the wavemaker. A 
well-defined hysteresis loop can be seen in both cases. In figure 8(a)  the amplitude 
of the ‘decaying’ mode is always higher than that of the ‘radiating’ mode. In 
figure 8 ( b ) ,  on the other hand, the backward transition from the ‘radiating’ to the 
‘decaying ’ mode occurs practically without any amplitude change, and the hysteresis 
loop has the form of a triangle. The explanation for such a form may be again obtained 
from figure 7. One can see that there exists a crossing point between the amplitude 
distributions in the two modes; the location of the point where the amplitudes of both 
modes are equal moves closer to the wavemaker with decreasing frequency. At  
kb/x = 1.987 ( A  = -0.87)’ this point is apparently located at a distance of about 
160 cm from the wavemaker. At more distant locations, the amplitude will incream 
when a transition from the ‘decaying’ to the ‘radiating’ regime occurs. This may 
explain the difference between our results and the amplitude dependence on 
frequency, given by BMP, (see their figure 5 ) .  

5.4. Long time modulation of the wavejield 
Special attention was also paid to the detailed analysis of the unsteady behaviour 
of the wave field in the ‘radiating’ mode. The general view of the wave field a t  strong 
forcing is shown in figure 9. One can see that at the moment shown, the standing wave 
in the channel has a very pronounced ‘hump’ far from the wavemaker. This ‘hump’ 
is generated periodically at the wavemaker, and then moves slowly downstream and 
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FIGURE 9. General view of the sloshing wave field at strong forcing. 

decays far away. The extension of this structure along the channel is about 4 m. This 
‘hump’ can be identified as an envelope soliton obtained in the numerical solution. 
The periodic behaviour at long timescale seems to be an additional display of 
Fermi-Pasta-Ulam recurrence phenomenon in water waves, as discussed theoreti- 
cally by Yuen & Ferguson (1978a, b), Stiassnie & Shemer (1987) and Cox & Mortell 
(1986) and observed experimentally by Su & Green (1984) in Stokes waves and by 
Lichter & Shemer (1 986) in cross-waves. 

Since the unsteady character of the wave field is more pronounced at higher 
amplitudes of forcing, the data for E =  0 . 8 3 ~ 1 0 - ~  is presented first. The time 
dependence of the wave amplitudes measured simultaneously by four wave gauges, 
which are fixed to the probe carriage, are presented in figure 10. These measurements 
cover the range of wave-gauge locations from 11 cm to 9 m from the wavemaker (with 
X varying from 0.083 to 6.8), corresponding to 5 different carriage positions and for 
a total duration of 2114 s, or 2400 wave periods (7 

The existence of a well-defined periodicity on the long timescale for all locations 
is evident. The period of the slow amplitude modulation is about 495 s (7 x 18). The 
periodic modulation observed everywhere in the tank, is supplemented by a clear 
envelope soliton-type waveform which is developed at x > 2 m. The soliton propa- 
gation velocity (estimated from the measured shift in the position of the maximum 
amplitude at different probes), is about 4 cm/s (corresponding to dimensionless 
X/7  x 0.80). One can also see from figure 10(a) that close to the wavemaker the 
modulation is relatively weak and it  becomes more pronounced with increasing x. 
The increase in the modulation depth (ratio between maximum and minimum 
amplitudes) is accompanied by a growth in the maximum wave amplitude, which at 

78). 
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x > 2 m becomes nearly twice as large as the value in the vicinity of the wavemaker. 
At  2 > 5 m the wavy disturbance in front of the soliton nearly vanishes, and the 
wave amplitude differs notably from zero and only when the soliton is present. 

One can assume that the increase in the height of the envelope soliton results from 
extracting energy from the background wave field. When the waves leading the 
soliton gradually disappear, the soliton height remains nearly constant 
(2.5 m < x < 5.5 m). For larger x, the soliton height decreases and this process is 
accompanied by a transfer of energy to background waves trailing the soliton 
(figure 10e, x = 897 cm). The total wave-energy decay rate along the channel is 
obviously due to dissipation (on the boundaries as well as in the bulk). 

the 
modulation period measured from figure 1 1 ,  is about 505 s which is nearly the same 
as the absolute value measured at  significantly higher amplitude. The renormalized 
dimensionless period now is about 13. At this lower forcing amplitude range no clear 

It is quite surprising to realize that at lower forcing amplitude, 8 = 0.60 x 

10 F L M  181 
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soliton-like waveforms could be observed, but the general pattern of the maximum 
amplitude variation with x is quite similar to the strong forcing case. At even lower 
forcing, the modulation is extremely weak and could hardly be detected (figure 12), 
for this reason no clear conclusions regarding the modulation period could be drawn. 

6. Discussion 
The numerical solutions presented in 93 differ qualitatively from the experimental 

observations in three main aspects (i) in contrast with the numerical results, which 
gave a single propagating solition (see figure l), the solitons observed in the 
experiments in the ‘radiating’ mode were generated periodically at the wavemaker; 
(ii) in the numerical solutions the wave amplitude a t  the wavemaker was found to be 
much higher than in the rest of the wavefield (figure l),  while in the experiments a 
quite different pattern was obtained (see figures 10 and 1 1) ; (iii) steady regimes were 
observed experimentally in the ‘decaying’ mode, but no such solutions were obtained 
numerically. 

The NLS equation (2.39) includes a single tunable parameter A ,  which represents 
the ratio between the detuning (SZ-w,) and the forcing amplitude B (see (2.40)). The 
normalized wave amplitude at the wavemaker C0(7) = IC(0, ~ ) 1 ,  shown in figure 2, 
depends therefore on h and 7 only, and is independent of the forcing 6. It thus seems 
interesting to compare the wave amplitudes measured experimentally at different 
forcing amplitudes in the vicinity of the wavemaker, with the numerically calculated 
values. Experimentally obtained amplitudes were calculated from the phase-aver- 
aged over long-time results. It thus appears reasonable to represent the numerically 
obtained oscillating quantities by some averaged values. Since the steady state in 
C,,(h, 7 )  is never attained, it was arbitrarily decided that the mean value of the last 
period of oscillations at 7 = 25 (see figure 2) will be chosen as the representative 
amplitude. The amplitude C, is related to the dimensional wave amplitude a by 

a 1  c - - & - a .  - 2b 
10-2 
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(b)  E = 0.83 x 

In figure 13 the numerically obtained wave amplitudes at the wavemaker are 
plotted as the function of h and compared against the experimentally measured 
values, normalized according to (6.1)’ for E = 0.42 x (figure 13a)  and 
E = 0.83 x (figure 13b).  One can see that the agreement is quite reasonable in 
both cases, and it improves with increasing amplitude of forcing. The better 
agreement between theory and experiment at  higher amplitudes of forcing manifests 
itself in two ways (i) the absolute normalized values of wave amplitude are slightly 
higher at larger E ,  but are still below the theoretical curve; (ii) there is no hysteresis 
in the theoretical solution, and the transition from the ‘decaying’ to the ‘radiating’ 
mode seems to correspond to the minimum of the curve C,(A), which ocurs at  
Ax -0.4. The experimentally observed transition occurs at  the values of h which 
are in quite good agreement with the theoretical prediction. The ‘shrinking’ of the 
hysteresis loop with increasing E also indicates an improved agreement with the 
theory in this case. 
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Re-examination of figures 4 and 5 leads to similar conclusions. The hysteresis loops 
in figure4 correspond to the values of the detuning parameter A in the range 
0.87 < A < -0.37 for E = 0.42 x and 
-0.61 < A < -0.55 for E = 0.83 x The range of A for which hysteresis is 
observed becomes therefore substantially narrower with stronger forcing. In  figure 5, 
at the lowest frequency the transition occurs at strong forcing (1.04 < E < 1.12). 
These values of E correspond to the range of variation of A from -0.51 to 
-0.47, which is in good agreement with the theoretical curve of figure 13. A t  
higher forcing frequency in figure 5 ,  the hysteresis loop becomes wider (tran- 
sition region 0.48 < E < 0.92; -0.84 < h < -0.44). At highest frequency, corres- 
ponding to kb /x  = 1.995, the hysteresis loop shrinks again, 0.5 < E < 0.64; 

These results confirm the conclusion made in $6 that the inviscid model is, in 
principle, incapable of describing correctly all wave-field features which are observed 
experimentally. The essential role of dissipation was also stressed by Cox & Mortell 
(1986) in their numerical solution of the forced Kortewegae Vries equation. In order 
to get a better qualitative agreement between experiment and theory, it seems 
therefore important to include dissipation effects in some way. Dissipation on the 
channel walls is a dominant mechanism in a real system (Ursell 1952) and should be 
included in the analysis. In  most investigations, e.g. Ursell, BMP, which deal with 
a relatively deep channel, only dissipation on the sidewalls is considered. The 
numerical results, yielding extremely high amplitudes at X = 0, indicate, however, 
that dissipation at the wavemaker cannot be disregarded in our case. 

In  the present work we do not attempt to give a full solution of the dissipation 
problem, but rather try to incorporate some crude dissipation models in the NLS 
equation and in the boundary conditions. It is well known that viscous dissipation 
in any oscillatory flow occurs in the Stokes layer, which in our case has the width, 
see e.g. Schlichting (1975), 

(6.2) 

The phase shift between the potential flow velocity and the shear stress on the wall, 
is 45". On the basis of these simple considerations we adopt the heuristic form similar 
to the one used by BMP to model the effect of dissipation on the walls and add to 
(2.39) a term a,( 1 + i) C, where a, is some real positive number. In order to account 
for dissipation at the wavemaker, the boundary condition (2.41) is modified in the 
following way : 

(6.3) 

-0.83 < h < -0.54 for E = 0.60 x 

-0.40 < A < -0.31. 

a,, = (2v/a) t  x 0.5 mm 4 b. 

where again a2 is some positive number. The solution of the modified equation (2.39) 
with the wavemaker boundary condition (6.3) for a, = 0 (no sidewall dissipation) and 
a, = 0.1 (dissipation on wavemaker) is given in figure 14 (a). One can immediately see 
that adding effective dissipation at the wavemaker, results in a dramatic change in 
the wave field. The periodic generation of solitons at the wavemaker can now be 
clearly ,wen. These periodically generated solitons propagate with the same velocity 
as the single soliton shown in figure 1 (a).  The numerical results displayed in 
figure 1 (a) now resemble strongly the experimental observations. 

The width of the soliton in figure 14(a) does not differ notably from that displayed 
in figure 1, and is about 4 dimensionless length units. This value is in good agreement 
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kith the soliton extension estimated from the experimental data presented in 
figures 9 and 10. 

In figure 14(b) an attempt was made to take into account the sidewall dissipation 
(al = 0.1) while neglecting the dissipation on the wavemaker (a, = 0). Here again, 
periodic generation of solitons is noticed. However, the solitons thus generated 
disappear very fast in the course of their motion down the channel due to strong 
dissipation. 

Figure 15 displays the time evolution of the wave amplitudes at 4 locations, 
calculated for the parameters of figure 14 (a), and provides an opportunity to compare 
directly the numerical results of the wavemaker dissipation model and the experi- 
mental data of figure 10. 

The calculated wave amplitude at the wavemaker is now strongly reduced relative 
to the inviscid case and is much closer to the experimentally obtained values. Its time 
dependence is, however, still quite different from the one shown in figure lO(a), and 
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figure 14(a). 

qualitatively resembles the results obtained without dissipation at the wavemaker 
(compare with figure 2). The frequency of amplitude oscillations in figure 15 at X = 0 
is somewhat different from the identical case without dissipation. It is interesting to 
note that this oscillation frequency is now twice the frequency of the appearance of 
the solitons. 

For X 2 2 the shape of the propagating soliton in figure 15 is quite similar to the 
one obtained experimentally. The non-dimensional soliton propagation velocity 
(about 2) is still substantially higher than that experimentally observed. The 
modulation period (A7x6) is also notably shorter than the one obtained from 
figures 7 and 8. We could not .expect better quantitative agreement from the present 
simplified dissipation model. The disagreement, however, clearly indicates that the 
experimental results are strongly influenced by dissipation. The weakening of the 
modulation with decreasing amplitude of forcing, and the corresponding growth in 
the dimensionless value of the modulation period also support this conclusion. 

All these facts indicate again that the inviscid nonlinear Schrodinger equation 
provides a better prediction of experimental observations at strong forcing. This can 
also be understood when one realizes that the relative importance of nonlinearity, 
as compared with essentially linear dissipation effects, increases with amplitude. The 
inviscid approach is thus more justifiable at higher wave amplitudes, where one can 
expect better quantitative agreement with experiment. The results of Lichter & 
Shemer (1986) for the cross-waves, where much higher soliton propagation velocities 
were recorded, seem to substantiate this conjecture. 

Nevertheless, the inviscid solution still differs from the observations even for the 
highest amplitude employed in the present experiments. For example, the periodicity 
of soliton formation cannot be explained within the framework of inviscid theory. 
The very crude dissipation model incorporated both in the Schrodinger equation and 
in the boundary condition on the wavemaker, yields a qualitative agreement with 
high amplitude observations, and exhibits a periodic appearance of solitons. As a 
matter of fact, including dissipation in the model introduces an additional tunable 
parameter and effectively decouples frequency detuning and amplitude. A refined 
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dissipation model will hopefully give even better agreement with the experiment, in 
particular at lower amplitudes of forcing. 

These considerations can help us to understand the differences between the 
experimental results of BMP and those reported here. Since the wave tank used by 
BMP was narrower by a factor of 4 than our flume, the effective dissipation in their 
experiments was much stronger. That might be the reason why BMP did not report 
on any propagating solitons and on the existence of a long time modulation in their 
experimental work. From the results presented by BMP one can deduce, however, 
that a hysteresis phenomenon similar in nature to the one discussed in our work, was 
also present in their experiments. One can speculate that the reason for this hysteresis 
stems from a strong interaction between dissipation and nonlinear effects. 

7. Conclusions 
(i) A well-defined hysteresis phenomenon by amplitude or frequency was observed 

experimentally at the vicinity of the cutoff frequency, in a relatively narrow 
frequency band. The observation of the hysteresis loop was made possibly only owing 
to the fact that the operation of the wavemaker was extremely stable, with the 
possibility of very fine frequency tuning. 

(ii) Two distinct wave regimes at identical forcing, depending on previous history 
and on frequency, were observed in the channel for all wavemaker amplitudes. 

(iii) At relatively low forcing amplitude the observed wave field was essentially 
steady. Increasing the forcing results in an amplitude modulation on a long timescale. 
At  highest forcing amplitude, solitons could be generated periodically at the 
wavemaker and then propagated down the channel with constant speed. 

(iv) A cubic Schrodinger equation, valid for a semi-infinite rectangular channel 
filled to an arbitrary water depth and with a proper boundary condition at the 
wavemaker, was derived. 

(v) The numerical solutions of this NLS equation were checked against experi- 
mental observations. Quantitative comparison of soliton propagation velocity, 
soliton width and location of transition, showed reasonably good agreement. This 
agreement improved significantly with increasing amplitude of forcing. 

(vi) The inviscid NLS equation was found inadequate in explaining the periodicity 
of soliton generation at the wavemaker and the direct amplitude dependence of the 
observed wave field. The NLS equation and the boundary conditions on the 
wavemaker were therefore modified to incorporate, in a qualitative manner, the effect 
of dissipation. 

(vii) The numerical solution of the modified nonlinear Schrodinger equation gave 
periodic appearance of propagating solitons similar to those observed in the 
experiments. 
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